Deteksi Tepi Optimal dengan Integrasi Canny, CLAHE, dan Perona-Malik Diffusion Filter
Abstract
Edge detection is a fundamental technique in digital image processing, crucial for identifying object boundaries. However, detecting edges in low-intensity and noisy images remains a significant challenge. This study proposes an optimal edge detection method by integrating the Canny algorithm, Contrast Limited Adaptive Histogram Equalization (CLAHE), and Perona-Malik Diffusion Filter, with automatic kappa (k) value determination using the Fractional Order Sobel Mask. The process begins with noise reduction through the Perona-Malik Diffusion Filter, followed by local contrast enhancement using CLAHE, and concludes with edge detection via the Canny algorithm. Experimental results demonstrate that the proposed method significantly enhances edge clarity and robustness against noise compared to the conventional Canny algorithm, particularly for low-intensity images and images with noise. Tests on leaf and medical images confirm the effectiveness of this method in improving edge detection quality in digital images.
References
Alwazzan, M. J., Ismael, M. A., & Ahmed, A. N. (2021). A Hybrid Algorithm to Enhance Colour Retinal Fundus Images Using a Wiener Filter and CLAHE. Journal of Digital Imaging, 34(3), 750–759. https://doi.org/10.1007/s10278-021-00447-0
Cai, Z., Ma, Z., Zuo, Z., Xiang, Y., & Wang, M. (2023). An Image Edge Detection Algorithm Based on an Artificial Plant Community. Applied Sciences, 13(7), 4159. https://doi.org/10.3390/app13074159
Hamdani, I. M., Anam, S., Shofianah, N., & Bustamin, S. (2023). Counting Bacterial Colony and Reducing noise on Low-Quality Image Using Modified Perona-Malik Diffusion Filter with Sobel Mask Fractional Order. Jurnal Sisfokom (Sistem Informasi dan Komputer), 12(2), 271–279. https://doi.org/10.32736/sisfokom.v12i2.1661
Maiseli, B. J. (2020). On the convexification of the Perona–Malik diffusion model. Signal, Image and Video Processing, 14(6), 1283–1291. https://doi.org/10.1007/s11760-020-01663-x
Maksimovic, V., Jaksic, B., Milosevic, M., Todorovic, J., & Mosurovic, L. (2024). Comparative Analysis of Edge Detection Operators Using a Threshold Estimation Approach on Medical Noisy Images with Different Complexities. Sensors, 25(1), 87. https://doi.org/10.3390/s25010087
Muntarina, K., Mostafiz, R., Khanom, F., Shorif, S. B., & Uddin, M. S. (2023). MultiResEdge: A deep learning-based edge detection approach. Intelligent Systems with Applications, 20, 200274. https://doi.org/10.1016/j.iswa.2023.200274
Olubusola Isinkaye, F., Gabriel Aluko, A., & Ayodele Jongbo, O. (2021). Segmentation of Medical X-ray Bone Image Using Different Image Processing Techniques. International Journal of Image, Graphics and Signal Processing, 13(5), 27–40. https://doi.org/10.5815/ijigsp.2021.05.03
Panda, T., Pranavi Peddada, H. S., Gupta, A., & Kanimozhi, G. (2022). Bone fracture detection through X-ray using Edge detection Algorithms. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 10(3), 508–521. https://doi.org/10.52549/ijeei.v10i3.3776
Sun, R., Lei, T., Chen, Q., Wang, Z., Du, X., Zhao, W., & Nandi, A. K. (2022). Survey of Image Edge Detection. Frontiers in Signal Processing, 2. https://doi.org/10.3389/frsip.2022.826967
Yaacoub, C., & Zeid Daou, R. A. (2019). Fractional Order Sobel Edge Detector. 2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA), 1–5. https://doi.org/10.1109/IPTA.2019.8936101
Yevsieiev, V., Maksymova, S., & Abu-Jassar, A. (2024). The Canny Algorithm Implementation for Obtaining the Object Contour in a Mobile Robot’s Workspace in Real Time. Journal of Universal Science Research, 2(3), 7–19.
Yu, X., Wang, Z., Wang, Y., & Zhang, C. (2021). Edge Detection of Agricultural Products Based on Morphologically Improved Canny Algorithm. Mathematical Problems in Engineering, 2021, 1–10. https://doi.org/10.1155/2021/6664970