Analisis Sentimen Terhadap Isu Kecurangan Pemilu 2024 Pada Platfom Twitter (X) Dengan Metode Naive Bayes Multinomial Dan Cosine Similiarity
Abstract
In an increasingly complex digital era, sentiment analysis has become a vital instrument in understanding the nuances of public opinion. This technique, which utilizes artificial intelligence and Machine Learning, allows us to extract knowledge about people's attitudes, emotions and perceptions towards various issues. This research examines public sentiment regarding the issue of fraud in the 2024 Election on the social media platform Twitter using a text mining-based sentiment analysis approach. Data was obtained through a crawling process using the Python programming language. The research methodology includes a series of stages, starting from data cleaning to improve quality, continuing with word weighting using the Term Frequency-Inverse Document Frequency (TF-IDF) algorithm, and ending with modeling using the Naïve Bayes Classifier algorithm. Model evaluation was carried out systematically by applying the Naive Bayes, Confusion Matrix and K-Fold Cross Validation methods to measure the level of accuracy and effectiveness of the model developed. This research aims to produce in-depth knowledge regarding the trends and dynamics of public sentiment regarding the issue of fraud in the 2024 Election in the realm of social media, especially Twitter (X). Based on the research results, it shows a percentage of 67.7%.
References
Akbar, Y., & Sugiharto, T. (2023). Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4.5 dan Naïve Bayes (Yuma Akbar 1*, Tri Sugiharto 2 ) Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4.5 dan Naïve Bayes. Jurnal Sains Dan Teknologi, 5(1), 115–122. https://doi.org/10.55338/saintek.v4i3.1368
Aryanti, P. G., & Santoso, I. (2023). Analisis Sentimen Pada Twitter Terhadap Mobil Listrik Menggunakan Algoritma Naive Bayes. IKRA-ITH Informatika : Jurnal Komputer Dan Informatika, 7(2), 133–137. https://journals.upi-yai.ac.id/index.php/ikraith-informatika/article/view/2821
Duei Putri, D., Nama, G. F., & Sulistiono, W. E. (2022). Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika Dan Teknik Elektro Terapan, 10(1), 34–40. https://doi.org/10.23960/jitet.v10i1.2262
Fauziah, S., Saputra, D. D., Pratiwi, R. L., & Kusumayudha, M. R. (2023). Komparasi Metode Feature Selection Text Mining Pada Permasalahan Klasifikasi Keluhan Pelanggan Industri Telekomunikasi Menggunakan Smote Dan Naïve Bayes. IJIS - Indonesian Journal On Information System, 8(2), 174. https://doi.org/10.36549/ijis.v8i2.289
Febriyani, E., & Februariyanti, H. (2023). Analisis sentimen terhadap program kampus merdeka menggunakan algoritma naive bayes classifier di twitter. Jurnal Tekno Kompak, 17(1), 25–38. https://ejurnal.teknokrat.ac.id/index.php/teknokompak/article/view/2061
Florensius Sianipar, J., Ramadhan, Y. R., & Jaelani, I. (2023). Analisis Sentimen Pembangunan Kereta Cepat Jakarta-Bandung di Media Sosial Twitter Menggunakan Metode Naive Bayes. Media Online), 4(1), 360–367. https://doi.org/10.30865/klik.v4i1.1033
Ipmawati, J., Saifulloh, S., & Kusnawi, K. (2024). Analisis Sentimen Tempat Wisata Berdasarkan Ulasan pada Google Maps Menggunakan Algoritma Support Vector Machine. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 247–256. https://doi.org/10.57152/malcom.v4i1.1066
Murni, M., Riadi, I., & Fadlil, A. (2023). Analisis Sentimen HateSpeech pada Pengguna Layanan Twitter dengan Metode Naïve Bayes Classifier (NBC). JURIKOM (Jurnal Riset Komputer), 10(2), 566. https://doi.org/10.30865/jurikom.v10i2.5984
Sari, D. N., Sari, D. N., Adelia, F., Rosdiana, F., Butar, B. B., & Hariyanto, M. (2020). Analisa Sentimen Terhadap Review Produk Kecantikan Menggunakan Metode Naive Bayes Classifier. JIKA (Jurnal Informatika), 4(3), 109. https://doi.org/10.31000/jika.v4i3.3086
Wulandari, V., Sari, W. J., Alfian, Z., Legito, L., & Arifianto, T. (2024). Implementasi Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor untuk Klasifikasi Penyakit Ginjal Kronik. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(2), 710–718. https://doi.org/10.57152/malcom.v4i2.1229
Copyright (c) 2025 Muhamad Giani putra, Iwan Rizal Setiawan, Didik Indrayana

This work is licensed under a Creative Commons Attribution 4.0 International License.